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An efficient relaxation method is developed for computing the properties of a family 
of vortex pairs with distributed vorticity, propagating without change of shape 
through a homogeneous, inviscid fluid. The numerical results indicate that a steady 
state exists even when the gap between vortices is arbitrarily small, and that as the gap 
closes the steady state approaches a limiting vortex pair with a cuspon the axis of sym- 
metry. Comparison is made with an approximate theory due to Saffman, and agreement 
is found to be good until the vortices are almost touching. The energy of members of 
the family is computed, and possible means of experimental production are discussed. 

1. Introduction 
Norbury (1973) has constructed a family of vortex rings which vary continuously 

between a potential vortex and a Hill's spherical vortex, such that each vortex in the 
family consists of a core of constant potential vorticity embedded in irrotational fluid. 
The analogous problem in two dimensions, relating to a family of vortex pairs for which 
t'he vorticity itself is constant within the cores, has received little attention. While 
Norbury (1  975) has proved that steady two-dimensional vortex pairs with vorticity 
confined to a compact region always exist provided that the vorticity is a Holder 
continuous function of the stream function, the proof does not apply to the present 
case of uniform vortices, as the vorticity in this case is not even a continuous function 
of the stream function. Hence, it is of interest to see whether a family of uniform vortex 
pairs can be found, and to discover what happens as the gap between the vortices 
decreases. Deem & Zabusky (1978~) b, hereinafter referred to as DZ) have identified 
one member of such a family, which they refer to as a 'translating V-state ), but have 
not exhibited the range of solutions possible, nor d'iscussed their properties. In  the 
present paper, we will present the results of a more detailed study of the two- 
dimensional problem. Specifically, we numerically calculate the steady-state shapes 
of a pair of simply connected, compact regions containing vorticity of opposite sign 
from each other, and embedded in irrotational fluid. The vorticity is assumed constant 
within each core. We restrict our discussion to solutions in which the boundary shapes 
have an axis of symmetry perpendicular to the direction of propagation , and in which 
the shapes are reflexions of each other about some line parallel to the direction of 
propagation. For each member of the family, propagation velocity, amount of entrained 
irrotational fluid, and kinetic energy are also de$ermined. The energetic properties of 
the family are used to investigate the production of vortices by roll-up of the wake of 
a lifting surface, following on early work by Prandtl(l922) and Spreiter & Sacks (1951). 
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The analytic calculation of the shape of a steady uniform vortex in a plane strain, 
performed by Moore & Saffman (1971), has been an invaluable theoretical tool in the 
study of two-dimensional vortices with finite-sized cores. One calculation based on this 
theory (Saffman 1979) predicts that a steady vortex pair with given cross-sectional 
area can be found regardless of how small the distance between vortex centroids is 
made, although the vortices become arbitrarily elongated as this distance decreases. 
It had remained unclear whether such solutions would continue to exist if the plane 
strain were replaced by the actual influence of the image vortex. This question is of 
particular importance because the existence of solutions for arbitrary closeness would 
indicate that a vortex pair could not disintegrate by mutually induced strain. It will 
be seen that, in the exact calculation, solutions continue to exist even when the gap 
between vortices is made arbitrarily small while holding the outer edges of the vortices 
fixed, but that the vortices approach a compact, limiting vortex pair in this limit 
rather than becoming indefinitely elongated, so that with fixed area the distance 
between centroids for compact steady vortices is bounded below. Nevertheless, we 
find that the approximate theory accurately predicts the propagation speed and 
degree of elongation of the numerically calculated vortex pair when the gap between 
vortex boundaries is as little as 10 yo of the distance between centroids. 

A major objective of this paper is to introduce a simple, efficient relaxation method 
for the solution of the one-dimensional nonlinear integral equation that appears in the 
problem. The method offers significant advantages over methods based on the Newton- 
Raphson iteration such as used by Norbury (1973) and DZ. Although certain informa- 
tion on the bifurcation properties of the equation is lost by using the relaxation method 
rather than Newton’s method, there are many situations in which it is sufficient to 
find only one branch of the solution family, and in such circumstances the relaxation 
method presented here is an attractive alternative to Newton’s method. The method 
generalizes easily to more complicated geometries than considered here; given the 
current level of interest in exploring steady configurations of vorticity in shear layers, 
jets, and wakes, we believe the relaxation method will find applications beyond the 
problem of propagating vortex pairs. 

2. The governing equations 
For the vorticity distribution described in the introduction the only criterion deter- 

mining a steady solution is that the boundaries of the two regions containing vorticity 
be streamlines. Hence, if we can express the two-dimensional Stokes stream function, 
1c., as a functional of the vortex boundary, the requirement that $ be constant on the 
boundary immediately yields an integral equation for the boundary shape. This repre- 
sentation can be easily effected via the Green’s function integral for the solution of 
Poisson’s equation in two dimensions. 

An example of the general type of vorticity distribution we will consider is shown 
in figure 1.  Let g(x) be the height of the boundary above the x axis, and assume the 
boundary shapes symmetrical about the x and y axes. We further stipulate 

g ( 4  = g(AA = 0, 

and g > 0 in between, with A ,  and A ,  positive. It is plausible that solutions with the 
assumed symmetry do exist, since the strain field induced by a vortex exhibits the 
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FIQURE 1. A core cross-section, with its defining characteristics. The boundaries that are shown 
separate regions of constant vorticity from irrotational fluid, and are assumed convex and sym- 
metric about both the x and y axes. The parameter x, is the centroid of the right-hand vortex, 
A, is the minimum distance from the y axis, and A ,  is the maximum distance from the y axis. 
The pair is propagating downward relative to fluid at rest a t  infinity. 

same symmetries as the vortex itself. The parametrization of the boundary requires 
that any perpendicular to the x axis dropped from a point on the vortex boundary be 
entirely contained within the vortex. Hence there are certain possible non-convex 
solutions which are precluded by the present formulation of the problem. As will be 
seen in 5 3, it is possible to identify a continuous family of vortices with the stated 
symmetry properties. The way in which other families of solutions enter the problem, 
for example through bifurcations from the symmetric family, is a separate problem 
of great theoritical interest. Let w,, be the absolute value of vorticity within the 
boundaries, and VT the velocity of propagation, which points in they direction. Then, 
in the reference frame moving with the vortex pair, the Green's function integral for 
the two-dimensional Poisson equation yields 

The last term is added to satisfy the boundary condition of uniform flow at infinity. 
5-2 
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The crucial simplification of these equations comes from the observation that, owing 
to the constant vorticity in the vortex cores, the integrals over y‘ in (1)  can be evaluated 
analytically. It can easily be verified that 

When this expression is substituted into (1)  and the assumed symmetry properties are 
used, we are left with an expression for $(x, y) in terms of the propagation velocity, 
V,, and a one-dimensional integral involving g(z). The resulting expression has the 
schematic form 

(3  a)  !% Y) = $ P ( G  Y) + ‘vrz, 

where 

and H, depends on the function g, in accordance with (2). The integral equation for 
g(z) now reads simply 

+[x,g(x)] = c = constant. (4) 

We may non-dimensionalize the problem by defining the following quantities: 

With these definitions, (4) becomes 

1 -  
c =Ixo Hg(X,gp!‘)d3’ +V,Z (6) 

Equation (6) appears to have three free parameters, namely Jo, p,, and C. However, 
from (6) and (3 a) we observe that 

L -  

+(4, O )  - $(I, O )  = o, 

- $ p ( - 4 , 0 )  - P P R  0) v, = 

from which we easily find that 

1 -Ao (7) 

Then C is determined by C = pP(l,0)+7,. (8) 

Thus, for any curve g(Z) there is a unique pair of values (vT, E )  for which S can possibly 
be a solution to (6). This implies that 7, and F are not free parameters, but instead 
must be determined simultaneously with the solution g to (6). The algorithm to be 
presented in the next section achieves this by computing 7, and 6 anew at each 
iteration using (7) and (8), thus ensuring that the solvability condition is always 
satisfied. Jo, which emerges as the only free parameter of the problem, is held constant 
throughout the computation. 
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The present formulationof the problem differs from that of DZ in two respects. First, 
DZ represent the boundary as ageneral curve (x(s) ,  y ( s ) ) ,  where s is the arc length along 
the curve. This difference is unimportant, as the integral in (6) can be trivially rewritten 
as a path integral along such a curve, computing dx’ along the curve and using only the 
upper limit in (2) to find the kernel. In  this manner boundary shapes as general as those 
examined by DZ can be treated within the present formulation. The second difference 
is that DZ express the steady-state condition in terms of the projection of velocity 
normal to the vortex boundary, whereas we use constancy of the stream function. We 
have chosen the latter formulation because it allows solution by the relaxation method 
to be described in 9 3. 

Substituting (8) for C into (6), we find that either the stream function or normal 
velocity formulation reduces to a nonlinear operator equation of the form 

qas, V,, 2,) = 0, 

where aS is the vortex boundary. DZ specify 7, as the bifurcation parameter and 
essentially find 2, as a nonlinear eigenvalue, whereas we prefer to use A,, a8 the 
bifurcation parameter. The latter choice simplifies the numerical method, and provides 
somewhat better control over the kind of solution obtained. 

3. Method of numerical solution 
We will now describe a simple iterative procedure for solving (6)-(8) for g(x). Hence- 

forth, we will drop the bars over dimensionless quantities, except where it is necessary 
to distinguish them from dimensional quantities. The iteration begins with an initial 
guess gO(x).  Once gN(x), the Nth iterate, is known, we can compute the vectors 

using (3 b ) .  The vector {xi} represents a set of points on the x axis, between A, and A,, 
which may have any desired spacing consistent with accurate representation of the 
boundary curve. The integrals required to evaluate l$ and Gi may be performed using 
any convenient numerical scheme; we used a trapezoidal integration scheme with a 
provision to subdivide the interval (xi, xi+,) when necessary to preserve accuracy of 
the integration. There is a logarithmic singularity in the integrand for Gi, but this may 
be dealt with in a straightforward fashion by analytically calculating the contribution 
from the singular part of the integrand. 

Next, we compute an estimate of V, using equation (7), which is 

and also compute the estimate 

Now we define a vector of residues 
cN = F&+ V$.  

= ( F r  + V $ X ~ )  - cN, (12) 

which, by definition, vanishes when g satisfies the system of integral equations. Hence, 
we want to adjust g(x j )  at each iteration so as to reduce the magnitude of the vector Rj. 
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This can be done by Newton's method, as used by Norbury for the case of vortex rings 
and DZ for V-states. However, implementing Newton's method for this system 
requires the solution of a linear integral equation at each iteration. In  the discrete 
approximation, this requires the evaluation, storage, and inversion of an M x M 
matrix, the elements of which must usually be computed numerically. This involves 
storage of O(M2)  and an operation count of O(M3). Clearly, if the need to evaluate and 
invert this matrix could be circumvented, considerable savings in computer time per 
iteration and in programming effort wouId result. Motivated by these observations, 
we have developed a relaxation scheme that offers improvements in simplicity over 
Newton's method, and requires overall storage of only O ( M )  and an operation count 
of O(Mz)  per iteration. We can only offer a heuristic justification of the method, but 
experience with the problem a t  hand indicates that convergence to a solution is always 
obtained. 

The justification for our method is that, since V g ,  cN, and +p are all related to gN by 
integral expressions, they should be relatively insensitive to small changes in g N ,  and 
hence most of the change in Rj will come from the fact that we are computing @ p  at a 
different point, rather than the fact that we are changing the shape of the boundary. 
With this assumption, if we write 

iwj) = s N ( q  +A,, 
then the change in Fj is given by 

N - FY + GYAj, 

where +p is computed using gN as the boundary curve. Since Aj vanishes a t  the 
boundary pointsj = 1 and j  = M ,  the change in V, and c due to the increment of g may 
be neglected. Hence, substituting into the expression for the residual vector, 

Sj E Rf + AjGf. 

As the estimate for the increment, we therefore take 

Ai = - Rf/Cy. (13) 

With this formula we can increment g and begin the process over again, starting 
with (9). However, since the estimate of Aj given by (I  3) is reliable only if Ai is small, we 
can only take (13) as giving an estimate of the direction in increment space by which 
to change (g(xj)} in order to reduce the residual. Therefore, at the risk of slowing con- 
vergence for the sake of ensuring stability, we multiply Aj by an under-relaxation 
factor K before incrementing, so that the incrementation rule is 

p + l ( x j )  = gN(Xjj +- K A ~ ,  o c K < 1. (14) 

The iteration is completed and the next iteration is begun by using gN+l  as the new 
estimate. A value of K = 0.6 was found to ensure convergence in all cases encountered. 

The advantages of the relaxation aIgorithm over Newton's method come at  a price, 
however. The M x M matrix computed in implementing Newton's method is an 
approximation to the Frechet derivative with respect to g(z) of the nonlinear operator 
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given by the right-hand side of (6). Except for isolated members of the solution family, 
the Frechet derivative will be invertible. Those points at  which the Frechet derivative 
is not invertible represent possible bifurcation points of the system. Modern develop- 
ments in bifurcation theory have shown how to use the kernel and cokernel of the 
derivative a t  bifurcation points to continue the solution onto the several branches that 
can emanate from the bifurcation point. (This theory is well covered in Berger (1977), 
especially pp. 154-158, 163-192, and 272-277.) This is an indisputably attractive 
feature of Newton’s method, and the speed and simplicity of the relaxation method 
must be weighed against the loss of this bifurcation information in deciding which 
method to use. It should be kept in mind, though, that in many cases the primary 
bifurcation is from a simple flow, for which bifurcation information may be obtained 
analytically. This is the case for bifurcation from a parallel shear layer into a family 
of shear-layer vortices, as treated by Pierrehumbert & Widnall(l979) and Saffman & 
Szeto (1979), and also for bifurcation from a circular vortex into families of uniformly 
rotating V-states, as treated by DZ. Information on secondary bifurcation points is 
harder to obtain without Newton’s method, but we note that neither Saffman & Szeto 
nor DZ needed to make use of this information to perform their calculations. 

4. Discussion of numerical results 

to the formula 

so as to provide more resolution in the regions where the boundary becomes vertical. 
Calculations were initially performed with M = 50, and truncation error was estimated 
by checking the results for representative vortices in the family against runs with 
M = 80. A further check was provided by comparing the values for the smaller, 
essentially circular vortices against readily available analytical results. All numerical 
values presented should be accurate to the number of significant figures stated. The 
relaxation algorithm was found to have first-order convergence properties, with 
IIAgNII < E IIAgN-lll asymptotically in the maximum norm; for K = 0.6, E was 
conservatively estimated as 0.5 from experience with the algorithm. In accordance 
with the first-order convergence properties, a fixed accuracy Sin g(x) was obtained by 
accepting convergence when IIAgll < +6. For most calculations we set 

The calculations outlined above were carried out with M points spaced according 

xj = g ( A , + A , ) + ~ ( A , - A , ) c O s ( ( j -  l ) n / ( M -  1)) 

6 = #(Al - A o ) / ( N  - 1) 

because this choice resulted in at least two decimal place accuracy in the vortex 
properties when M = 50 and allows for refinement of the values when M is increased. 
The convergence of Newton’s method is second order (Berger 1977, pp. 116-118) and 
therefore requires far fewer iterations than relaxation for a specified level of conver- 
gence. It can be seen very simply that in most cases the lower operation count of 
relaxation more than offsets the convergence rate of Newton’s method. Let Nl be the 
number of relaxation iterations needed to reduce the initial error by a factor 6/Ago, 
and A?, the equivalent number for Newton’s method. Then first-order convergence 
implies Nl = In (S/Ago)/ln 8 whereas second-order convergence implies 

N, = In [In (S/Ago)/lne]/ln 2. 
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FIGURE 2. The family of solutions to the steady vortex pair problem. The displayed curves 
represent boundaries between rotational and irrotational flow for various members of the family. 
The image vortices are not shown, as they are merely the reflexions of these curves about the 
horizontal axis. In  this figure the outer edge of the vortex is held fixed for all members and the 
gap between the vortices is varied. Values of R/xo for the curves, from outside in, are: 2.16, 
1.97, 1.55, 1.22, 0.844, 0.639, 0.500, 0.390, 0.225, 0.159, 0.100 and 0.048. 

If E is about the same for the two methods, the ratio of operation count for relaxation 
to reach convergence to that for Newton’s method is approximately 

n = Nl/(MN,) = Nlln2/(Mln Nl), 

using M 2  operation count for relaxation and M3 for Newton’s method. In  computing 
the family of vortices we began with circular vortices a t  2, close to unity, and pro- 
gressed to smaller A, using a similarity scaling of the previously computed vortex as 
an initial guess for the next vortex boundary. With steps in 2, on the order of 0. I each 
new vortex required under six iterations for convergence to the previously stated level 
of accuracy. With M = 50 and Nl = 6 we then have n = 0.05, so that relaxation saves 
an estimated factor of twenty in computer time over Newton’s method. Of course, if 
N, were to increase indefinitely with M fixed, Newton’s method would eventually win 
out, but there is little point in increasing the convergence accuracy without also 
increasing M ,  as Nl = 6 already yields accuracy comparable to truncation ‘error 
(due to trapezoidal integration) over most of the boundary. In  any event, the break- 
even point for M = 50 does not occur until N, N 600, at  which point the initial error is 
reduced by a factor of 10-leo, representing a number of significant figures enormously 
beyond the number likely to  be required in any calculation of this type. These figures 
are subject to some change, depending on programming details and the true value of 
e for Newton’s method, but the direction of the advantage is clear. It is notoriously 
difficult to predict actual timing for a given machine, but as a rough guide we found 
that each relaxation iteration with M = 50 takes 1.5 seconds on a Texas Instruments 
ASC, using scalar code. The timing is O(M2)  for scalar code, and can be reduced to O ( M )  
for vector code, since the integrals needed in the relaxation method can all be done in 
parallel. It was not necessary to use vector code, as the net computation time was not 
great enough to make the additional programming effort worth while. The speed of the 
algorithm even in scalar form makes it ideal in cases where available computer 
resources are limited. 

The family of boundary curves satisfying (6) is shown in figure 2. In  this figure, A ,  
(the co-ordinate of the outer edge of the region containing vorticity) is held fixed while 
A ,  (the co-ordinate of the inner edge) is varied from a small positive value to a value 
close to A,. The quantity A, = A,/Al provides a non-dimensional measure of the gap 
between vortices. As would be expected, the vortex boundary becomes circular for 
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2, near unity and becomes highly distorted when 2, is small. We have taken the 
calculation to 2, = 0-001 and always found a steady solution. The vortex does not 
become indefinitely elongated as 2, -+ 0, but instead approaches a limiting shape. 
Through a minor modification of our program it was possible to set 2, = 0 and calculate 
the limiting vortex directly. This vortex is shown together with the others in figure 2. 
In  the region x < O-lA, the limiting vortex boundary becomes rapidly steeper as the 
y axis is approached, although this region is too small to accurately resolve in figure 2. 
The steepening was confirmed by running the algorithm to a convergence level of a 
tenth the customary level, so that the slopes could be accurately computed. This 
property of the boundary suggests that the actual solution has a cusp on the y axis. By 
considering the flow field near the point of contact between the right-hand vortex and 
the y axis it can be shown that this is indeed true. 

Consider the point of contact between the right-hand vortex boundary and the 
negative-y axis, and let r be the distance from this point and 0 the angle around this 
point, with 8 = 0 pointing along the negative-y axis. Then, if the contact angle is So, 
the stream function in the vicinity of the point is determined in the region 0 < 0 < n by 

and 

Also, we must require continuity of the tangential velocity across the line 8 = 0,, 
that is, 

The case 0, = Qn is immediately precluded, since the boundary conditions for (1 6) 
imply that $xx = $uu = 0 at the corner, and hence the vorticity must also vanish at  
the corner, implying that no continuous solution can exist in the region containing 
vorticity. As for the general case, it may readily be verified that 

- 
W ,  r2 cos (20 - 0,) 

$11 = 4 ( case, 
and $I = Bra sin a0, (19) 

Bara = $wor2 tan 0,. (20) 

Obviously, equation (20) cannot be satisfied for non-zero 8,, regardless of the choice 
of B. Hence we conclude that the slope (cot (8,)) of the vortex boundary must become 
infinite where it joins the axis, implying the existence of a cusp. 

Moore & Saffman (1971) have shown that the steady-state shape of a uniform vortex 
in a plane strain is elliptical, and that a steady elliptical state can exist only when the 
strain rate relative to the core vorticity is sufficiently small. Saffman (1979) has used 
their result to estimate the properties of a vortex pair with distributed vorticity, 
such as has been considered in the present work. The results of the approximate calcu- 
lation are in agreement with our numerical results in that a steady state exists for A, 

where a = n/B0. Substituting in (17), we find 
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arbitrarily small. However, the approximate elliptical vortices become elongated to 
an arbitrarily great extent in this limit, whereas the actual solutions do not. This 
discrepancy arises because c (the value of the stream function on the vortex boundary) 
must approach zero as A,, becomes small, so that the vortex boundary must become 
identical with the separating streamline $ = 0 in this limit, and the portion of the 
vortex boundary nearest the y axis must approach the y axis. An elliptical vortex 
cannot satisfy this requirement without becoming indefinitely elongated, whereas the 
inner portion of the true vortex boundary is free to become vertical without affecting 
the outer portion. It is possible that the family we have exhibited can be continued 
past the limiting vortex into a family for which the region containing vorticity is not 
compact, but extends to infinity along the y axis; we have made no attempts to find 
such vortices. 

In  order to facilitate quantitative comparison between the numerical and approxi- 
mate results, we have evaluated a number of non-dimensional characteristics of the 
numerically determined vortex pair. We first define the centroid of the right-hand 
vortex 

j l ; x s ( x )  dx 

/ l ; s ( x )  dx ’ 
xc = (21)  

which is a dimensional measure of the closeness of the vortices. The area of the same 
vortex is obviously given by 

s = 2J;g(x)dx,  

whence the circulation r = 0,s is found. A measure of the vortex size is the effective 
radius R, given by 

This is the radius the vortex would have if it were circular. A convenient non- 
dimensional parametrization of the vortex family is then R / x c .  When R / x c  1,  the 
vortex size is large compared to its distance from the image vortex, and so will be 
considerably distorted. A useful velocity scale is 

R = (S/n)*. (23 )  

which is the propagation velocity the vortex pair would have if all the vorticity were 
concentrated in point vortices a t  x = & xc. The corresponding non-dimensional propa- 
gation velocity is V$ = V,/V,. As a non-dimensional measure of the distortion of the 
vortex we take the maximum vortex height relative to the vortex half-width, 
h/[*(A,  - A,) ] ,  which approaches unity for nearly circular vortices. As before, we use 
&/A, as the non-dimensional measure of the distance of closest approach of the 
vortices. The non-dimensional quantities we have defined are similar to those used by 
Saffman. These and other characteristics of the vortices shown in figure 2 are given in 
table 1. 

In  figure 3 we have plotted the aforementioned vortex Characteristics as functions 
of Rlx , ,  along with the approximate results due to Saffman. From this figure it is 
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R/xo  

0.048 
0.100 
0.159 
0.225 
0.390 
0.500 
0.639 
0.844 
1.22 
1.55 
1.97 
2.16 

%/A1 

0.955 
0.909 
0.864 
0.818 
0.726 
0.679 
0.631 
0.577 
0-510 
0.469 
0.429 
0.4130 

AOIAl 

0.9091 
0.8182 
0.7273 
0.6364 
0.4545 
0.3636 
0.2727 
0.1818 
0.09091 
0.04545 
0.00909 1 
0 

2h/(A, - A,) v; 
1.00 1.00 

1 a 0 0  1.01 
1.00 1.01 

1.03 1.00 
1.08 1.00 
1.13 0.99 
1.22 0.98 
1.40 0.94 
1.82 0.83 
2.27 0.72 
2.94 0.59 
3.41 0.54 

c/r 
- 0.51 
- 0.40 
- 0.32 
- 0.27 
- 0.18 
- 0.14 
-0.11 
- 0.067 
- 0.028 
- 0.012 
- 0.0018 

0 

Y*/% %/XC 

1.73 2.09 
1.73 2.09 
1-73 2.09 
1.73 2.09 
1.74 2.09 
1.75 2.09 
1-78 2.09 
1.87 2.11 
2.20 2.17 
2.68 2.24 
3.53 2.35 
4.13 2.42 

Q/CW 
719 
180 
71-6 
35.7 
11.9 
7.36 
4.58 
2.79 
1.64 
1.26 
1-05 
1.00 

T* 

0.63 
0.52 
0.46 
0-39 
0.30 
0.26 
0.22 
0.18 
0.13 
0.098 
0.073 
0.064 

TABLE 1. Table of vortex properties. S is the area of one vortex, R = (S/n)b; A,, A,, and h are defhed in 
figure 1 ; x ,  is the centroid of the right-hand vortex; V ;  is the normalized translation velocity; c is the value 
of stream function on the vortex boundary; r is the circulation of right-hand vortex; ys is the y intercept of 
the separating streamline; x, is the x intercept of the separating streamline; Q is the total cross-sectional 
area enclosed by the separating streamline; T* is the normalized kinetic energy. 

*h 
b 

0 0.4 0.8 1.2 1.6 2 4  
R I X C  

FIGURE 3. Properties of the family of vortex pairs. R / x c  parametrizes the family. When it is small 
the vortices approximate point vortices and when it is large the vortices are nearly touching 
(see text for details). -O-O-O-, normalized translation velocity, V*,; -o-n-O-, vortex 
elongation, 2h/(A1 - A,); -A-A-A-, normalized intervortex gap, A,/A,. Broken lines indicate 
the approximate results of Saffman. 

evident that the approximate results agree quite well with the more precise numerical 
results, even when R/xc is as large as 1-9, the only appreciable divergence appearing in 
the values for elongation when the vortices are close. The greater elongation predicted 
by the approximate theory arises partly because the exact shape of the vortex boundary 
is skewed toward the line of symmetry, as shown in figure 2, whereas the approximate 
vortex shape is symmetric about the line x = xc, which coincides with its major axis. 
Given identical vortex area and distortion, this asymmetry makes x, smaller for the 
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exact solution, and hence R/xc larger. At fixed R/x,, then, the distortion is expected 
to be less for the numerical solution. The divergence is most pronounced when the 
vortices are close, as the asymmetry is most pronounced in this case. The overestimate 
of elongation in the approximate theory when the vortices are close also reflects the 
fact that the exact solutions approach a' limiting vortex, whereas the approximate 
solutions do not. 

The decrease in V$ from its asymptotic value of unity is quantitatively similar for 
the numerical and approximate calculations, and in either case may be traced to the 
elongation of the vortices as they approach each other. Essentially, when all the 
vorticity is concentrated in a small region, the velocity induced at  a given point on a 
vortex by its image receives nearly the same contribution from each point on the image. 
When the vortices are elongated, however, the contributions from the distant portions 
of the image vortex are significantly less than those from the near portions, and the 
total induced velocity is correspondingly less than if the same circulation were con- 
centrated in a smaller region. 

Once the vortex boundaries have been found, it is an easy matter to compute the 
properties associated with the vortex pairs, such as the separating streamline and 
kinetic energy. We have found that up to R/xc = 0.85 the separating streamline is very 
like that for a pair of point vortices located at kxc .  (This curve may be found in 
Batchelor (1967).) As R/xc is increased past this point, the separating streamline 
approaches the vortex boundary, until the two become identical at the limiting vortex. 
In  table 1 we have given the y intercept, ys, and the x intercept, x,, of the separatrix in 
units of xc. We have also given the cross-sectional area Q of the lens of fluid carried 
along with the vortex pair, in terms of the total vortex area 25. The energetic properties 
are discussed in 0 5 .  

5. Energetic constraints on the production of vortex pairs by roll-up 
In this section we consider the possibility of producing the vortex pairs we have 

computed by the two-dimensional roll-up of a vortex sheet such as might be shed into 
the wake of a wing. The results presented here must be interpreted in the light of two 
caveats. First, roll-up of a vortex sheet probably will not result in uniform vortices, 
so the results may be taken only as a crude estimate of the size of vortices produced. 
Second, the assumption of two-dimensional roll-up is not a very good one for highly 
swept or low aspect-ratio wings, for which roll-up is rapid and three-dimensional effects 
are bound t o  be important. In the latter case leading-edge separation can further 
complicate the situation. 

Consider an initial state consisting of a vortex sheet on the x axis between x = - b 
and x = b, having circulation per unit length y (x )  = - y( - x). Such a vortex sheet 
could be produced in the wake of a wing having bound circulation distribution r ( x )  
defined by y ( x )  = - dI'/dx. Note that the magnitude of total circulation shed into each 
trailing vortex is To = r(0). We now consider the constraints placed on the final state 
produced by inviscid roll-up, owing t o  the conservation of impulse, energy, and r0. 
Pioneering work along these lines was done by Prandtl (1922) and Spreiter & Sacks 
(1951) for the case of circular vortices; our contribution is to extend the calculation to 
the case where the final state is not circular. 
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One of the conserved quantities can be eliminated by dimensional analysis, and we 
take it to be ro. If T is the total kinetic energy of the vortex pair computed in the 
reference frame where the fluid is a t  rest at  infinity, P the Kelvin impulse, and p the 
fluid density, we can define non-dimensional energy and impulse as T* = T/(pr,2) and 
P* = P/(pbI',). (Precisely speaking, T and P are energy and impulse per unit length in 
the x direction.) Spreiter & Sacks recognized that P* is proportional to xc/b, where xc 
is the centroid of vorticity as defined earlier, so that x, for the initial and final states 
are the same. This would not be the case if mutual destruction of vorticity by viscous 
diffusion were allowed. For uniform vortices, T* can be conveniently computed in 
terms of a path integral along the vortex boundary, as we have discussed elsewhere 
(Pierrehumbert & Widnall 1979). The values of T* for the family of vortex pairs are 
given in table 1. The quantity xc for the initial vortex sheet determines x, for the vortex 
pair, thus setting the fundamental length scale. It is T* that determines which member 
of the family is selected. 

Ashley & Landahl(l965) have given a formula for computing the T* of a wing-wake. 
If B is defined by x = b sin 8 and r ( x )  is represented by a Fourier series 

then their formula can be cast in the form 
m 

From 

T* 

( 2 5 )  it is easily found that 

For an elliptically loaded wing B, = 1 and Bj = 0 for j  > 1, so T* = n/8 N 0.39. Thus, 
referring to table 1 an elliptically loaded wing will produce trailing vortices with 
R/xc  = 0.225. This is in close agreement with the value of 0.192 found by Spreiter & 
Sacks. The difference arises because Spreiter & Sacks computed the energy of the 
vortex pair under the assumption R / x ,  < 1, and when R/xc  is as large as 0.2 some 
of the neglected terms are not truly insignificant, even for circular vortices. We have 
found that when these terms are included the calculation based on circular vortices 
yields the same result as the numerical calculation, as it should, since the vortices 
are still essentially circular at R/x,= 0.225. The variable T* is a monotonic decreasing 
function of R/xc,  so to produce distorted vortices we must find leading distributions 
with lower T*. 

In  fact, T* for the initial state can be made arbitrarily small. If we take 

Bj = I / (Zj- - l )  for j < N and Bj = 0 for j > N 

we find from (26) that 

7r 1 

j=l 
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5 466(x) 5 #66(x) 

0 1.0000 0.2007 0.3780 
0.002625 0.9951 0.2198 0.3523 
0-005469 0.9793 0.2404 0.3448 
0.008550 0.9509 0-2626 0.3249 
0.01189 0.9097 0.2864 0.3149 
0.01551 0.8569 0.3121 0.2944 
0-01943 0.7962 0.3397 0.2868 
0.02367 0.7338 0.3692 0.2675 
0.02828 0.6776 0.4008 0.2517 
0.03326 0.6353 0.4334 0.2409 
0.03866 0.6115 0.4703 0.2280 
0.0445 1 0.6041 0-5082 0.2133 
0.05085 0.6035 0.5483 0.1985 
0.05771 0.5956 0.5903 0.1839 
0.06515 0.5712 0.6340 0.1680 
0.07320 0.5349 0-6793 0.1506 
0.08192 0.5046 0.7255 0.1378 
0-09136 0.4940 0.7722 0.1216 
0-1016 0.4925 0.8184 0.1075 
0.1126 0.4753 0.8631 0.08939 
0.1246 0.4439 0.9048 0.07255 
0.1376 0.4286 0.9418 0.05558 
0.1516 0.4258 0.9719 0.03905 
0.1667 0.4021 0.9924 0.02083 
0.1831 0.3821 1~0000 0 

TABLE 2. Normalized load distribution to produce a vortex with T* = 0.13. b is the semispan 
and the distribution is symmetric in x; x , /b  = 0.064 for this distribution. 

Also, z c / b  = *T* in this case. The corresponding bound circulation distribution, 
normalized so Po = 1, will be called $&z/b). The integral test immediately demon- 
strates that the denominator in (28) grows without bound as N is increased, and 
becomes logarithmically infinite for large N. The functions $Lv for moderate to large N 
fall off rapidly from unity while z/b is small, and thereafter decrease more gradually 
to zero as z/b -+ 1. The function &, corresponding to T* = 0.13, is given in table 2. 
This loading distribution corresponds to a moderately distorted vortex pair with 
R / x c  = 1.22. Since x,/b = 0.064 for this distribution, the vortices are small compared 
to the span and lie close to the centre of the wing. From table 2 it  is evident that a wing 
with such a loading distribution would have to have a highly swept leading edge, and 
under such circumstances leading-edge separation would be likely to occur, and the 
assumptions used to predict T* would become invalid. Though a more sophisticated 
theory would be needed to treat this case, the energy comparison indicates that only 
wings with very steep leading edges are likely to produce vortices that are appreciably 
distorted. We note that, if the induced drag Di is measured directly in an experiment, 
R / x c  for the wake is determined by T* = Di/(pI'g), regardless of the conditions under 
which roll-up occurs. 

6. Conclusions 
We have exhibited a continuous family of vortex pairs with uniform vorticity, 

ranging from a pair of pointlike vortices to a limiting vortex pair in which the vortex 
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boundaries are in contact along the axis of symmetry and have a cusp on that axis. The 
existence of a limiting vortex, and consequently of an upper bound for R/xc  for compact 
steady vortices, stands in contrast to the approximate results of Saffman (1979), which 
indicated that a steady state could be found for arbitrarily large R/xc. Nevertheless, 
the approximate theory accurately predicts a number of vortex characteristics even 
when it is operating well outside the rigorous range of validity discussed by its 
originator. By examining the energy of the vortex pairs, we have concluded that 
vortices deviating appreciably from circularity are unlikely to be produced in the 
wakes of wings of practical interest. We have, however, described a family of lift 
distributions corresponding to planforms with highly swept leading edges, which have 
some potential for producing the more distorted vortices described in this paper. 

Under most circumstances the relaxation method developed for computing the 
vortex family will perform considerably better than Newton’s method in terms of 
number of operations needed to achieve convergence, although information on the 
location of secondary bifurcation points is lost by using the relaxation method. By 
virtue of its simplicity, our method is easy to extend to other geometries. We have 
already used the algorithm to construct the steady states of periodic arrays of uniform 
vortices in a shear layer (Pierrehumbert & Widnall 1979).? It is likely that relaxation 
would also be useful in investigating the structure of vortex streets and uniformly 
rotating vortices. 

The author wishes to express gratitude to the Knox Foundation, which provided 
support while he was a research student at  the Department of Applied Mathematics and 
Theoretical Physics, Cambridge, where the work herein presented was begun. The 
authorisalsoindebtedtoN. 0. Weiss (D.A.M.T.P.)andS. E. Widnall (M.I.T.)formany 
valuable discussions. This work was made possible by the generous provision of com- 
puter time by the N.O.A.A. Geophysical Fluid Dynamics Laboratory, Princeton, N.J. 
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f Saffman BE Szeto (personal communication, 1979) approached this problem simultaneously 
and independently using Newton’s method and arrived at solutions virtually identical with ours. 
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